
 

Concentrations of volatile organic compounds are measured in shallow ground waters across a 
several county area.  The wells sampled can be classified as being contained in one of seven 
land-use types:  undeveloped, agricultural, wetlands, low-density residential, high-density 
residential, commercial, and industrial/transportation.  Do the concentrations of volatiles differ 
between these types of surface land-use, and if so, how? 

Alkalinity, pH, iron concentrations, and biological diversity are measured at low flow for small 
streams draining areas mined for coal.  Each stream drains either unmined land, land strip-mined 
and then abandoned, or land strip-mined and then reclaimed.  The streams also drain one of two 
rock units, a sandstone or a limestone formation.  Do drainages from mined and unmined lands 
differ in quality?  What affect has reclamation had?  Are there differences in chemical or 
biological quality due to rock type separate and distinct from the effects due to mining history? 

Three methods for field extraction and concentration of an organic chemical are to be compared 
at numerous wells.  Are there differences among concentrations produced by the extraction 
processes?  These must be discerned above the well-to-well differences in concentration which 
contribute considerable noise to the data. 

The methods of this chapter can be used to answer questions such as those above.  These 
methods are extensions of the ones introduced in Chapters 5 and 6, where now more than two 
groups of data are to be compared.  The classic technique in this situation is analysis of variance.  
More robust nonparametric techniques are also presented for the frequent situations where data 
do not meet the assumptions of analysis of variance. 

Chapter 7
Comparing Several
Independent Groups
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Suppose a set of continuous data, such as concentration or water levels, is collected.  It is 
suspected that one or more influences on the magnitude of these data comes from grouped 
variables, variables whose values are simply "from group X".  Examples include season of the 
year ("from summer","winter", etc.), aquifer type, land-use type, and similar groups.  Each 
observation will be classified into one of these groups.   

First consider the effect of only one grouped variable, calling it an explanatory variable 
because it is believed to explain some of the variation in magnitude of the data at hand.  This 
variable is also called a factor.  It consists of a set of k groups, with each data point belonging in 
one of the k groups.  For example, the data could be calcium concentrations from wells in one 
of k aquifers, and the objective is to determine whether the calcium concentrations differ among 
the k aquifers.  Within each group (aquifer) there are nj observations (the sample size of each 
group is not necessarily the same).  Observation yij is the ith of nj observations in group j, so 
that i=1,...nj for the jth of k groups j=1,...k .  The total number of observations N is thus 

 N = ∑
j=1

k
  nj ,  which simplifies to   N = k•n 

when the sample size nj = n for all k groups (equal sample sizes).   

The tests in this chapter determine if all k groups have the same central value (median or mean, 
depending on the test), or whether at least one of the groups differs from the others.  When data 
within each of the groups are normally distributed and possess identical variances, an analysis of 
variance (ANOVA) can be used.  Analysis of variance is a parametric test, determining whether 
each group's mean is identical.  When there are only two groups, the ANOVA becomes identical 
to a t-test.  Thus ANOVA is like a t-test between three or more groups of data, and is restricted 
by the same types of assumptions as was the t-test.  When every group of data cannot be 
assumed to be normally distributed or have identical variance, a nonparametric test should be 
used instead.  The Kruskal-Wallis test is much like a rank-sum test extended to more than two 
groups.  It compares the medians of groups differentiated by one explanatory variable (one 
factor).  

When the effect of more than one factor is to be evaluated simultaneously, such as both rock 
type and mining history in one of the examples which began this chapter, the one-way tests can 
no longer be used.  For data which can be assumed normal, several factors can be tested 
simultaneously using multi-factor analysis of variance.   However, the requirements of normality 
and equal variance now apply to data grouped by each unique combination of factors.    This 
becomes quite restrictive and is rarely met in practice.  Therefore nonparametric alternatives are 
also presented. 

The following sections begin with tests for differences due to one factor.  Subsequent sections 
discuss tests for effects due to more than one factor.   All of these have as their null hypothesis 
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that each group median (or mean) is identical, with the alternative that at least one is different.  
However, when the null hypothesis is rejected, these tests do not tell which group or groups are 
different!  Therefore sections also follow on multiple comparison tests -- tests performed after 
the ANOVA or Kruskal-Wallis null hypothesis has been rejected, for determining which groups 
differ from others.  A final section on graphical display of results finishes the chapter. 
 

7.1   Tests for Differences Due to One Factor 

7.1.1   The Kruskal-Wallis Test 
The Kruskal-Wallis test, like other nonparametric tests, may be computed by an exact method 
used for small sample sizes, by a large-sample approximation (a chi-square approximation) 
available on statistical packages, and by ranking the data and performing a parametric test on the 
ranks.   Tables for the exact method give p-values which are exactly correct.  The other two 
methods produce approximate p-values that are only valid when sample sizes are large, but do 
not require special tables.  Tables of exact p-values for all sample sizes would be huge, as there 
are many possible combinations of numbers of groups and sample sizes per group.  Fortunately, 
large sample approximations for all but the smallest sample sizes are very close to their true 
(exact) values.  Thus exact computations are rarely required.  All three versions have the same 
objective, as stated by their null and alternate hypotheses. 

7.1.1.1   Null and alternate hypotheses 
In its most general form, the Kruskal-Wallis test has the following null and alternate hypotheses: 
 H0: All of the k groups of data have identical distributions, versus 
 H1: At least one group differs in its distribution. 

No assumptions are required about the shape(s) of the distributions.  They may be normal, 
lognormal, or anything else.  If the alternate hypothesis is true, they may have different 
distributional shapes.  In this form, the only interest in the data is to determine whether all 
groups are identical, or whether some tend to produce observations different in value than the 
others.  This difference is not attributed solely to a difference in median, though that is one 
possibility.  Thus the Kruskal-Wallis test, like the rank-sum test, may be used to determine the 
general equivalence of groups of data.   

In practice, the test is usually performed for a more specific purpose -- to determine whether all 
groups have the same median, or whether at least one median is different.  This form requires 
that all other characteristics of the data distributions, such as spread or skewness, are identical -- 
though not necessarily in the original units.  Any data for which a monotonic transformation, 
such as in the ladder of powers, produces similar spreads and skewness are also valid.  This 
parallels the rank-sum test (see Chapter 5).  As a test for difference in medians, the Kruskal-
Wallis null and alternate hypotheses are: 
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 H0: The medians of the k groups are identical,   
 H1: At least one median differs from the others. (a 2-sided test). 

As with the rank-sum test, the Kruskal-Wallis test statistic and p-value computed for data that 
are transformed using any monotonic transformation are identical to the test statiistic and p-
value using the original units.  Thus there is little incentive to search for transformations (to 
normality or otherwise) -- the test is applicable in many situations. 

7.1.1.2   Computation of the exact test 
The exact form of the Kruskal-Wallis test is required when comparing 3 groups with sample 
sizes of 5 or less per group, or with 4 or more groups of size 4 or less per group (Lehmann, 
1975).  For larger sample sizes the large-sample approximation is sufficiently accurate.  As there 
are few instances where sample sizes are small enough to warrant using the exact test, exact 
tables for the Kruskal-Wallis test are not included in this book.  Refer to either Conover (1980) 
or Lehmann (1975) for those tables. 

Should the exact test be required, compute the exact test statistic K as shown in the large sample 
approximation of the following section.  K is computed identically for both the exact form or 
large sample approximation.  When ties occur, the large sample approximation must be used. 

7.1.1.3   The large-sample approximation 
To compute the test, the data are ranked from smallest to largest, from 1 to N.  At this point the 
original values are no longer used; their ranks are used to compute the test statistic.  If the null 
hypothesis is true, the average rank for each group should be similar, and also be close to the 
overall average rank for all N data.  When the alternative hypothesis is true, the average rank for 
some of the groups will differ from others, reflecting the difference in magnitude of its 
observations.  Some of the average group ranks will then be significantly higher than the overall 
average rank for all N data, and some will be lower.  The test statistic K uses the squares of the 
differences between the average group ranks and the overall average rank, to determine if groups 
differ in magnitude.  K will equal 0 if all groups have identical average ranks, and will be positive 
if group ranks are different.  The distribution of K when the null hypothesis is true can be 
approximated quite well by a chi-square distribution with k−1 degrees of freedom.   
 
The degrees of freedom is a measure of the number of independent pieces of information used 
to construct the test statistic.  If all data are divided by the overall group mean to standardize the 
data set, then when any k−1 average group ranks are known, the final (kth) average rank can be 
computed from the others as 

 kR   =   
N
nk  • 1 −

n
j

Nj =1

k −1

∑ R 
j

 

 
  

 

 
   

Therefore there are actually only k−1 independent pieces of information represented by the k 
average group ranks.  From these the kth average rank is fixed. 

jkmonson
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Large Sample Approximation for the Kruskal-Wallis test  
Situation Several groups of data are to be compared, to determine if their medians are 

significantly different.  For a total sample size of N, the overall average rank 
will equal (N+1)/2.  If the average rank within a group (average group rank) 
differs considerably from this overall average, not all groups can be considered 
similar. 

Computation All N observations are jointly ranked from 1 to N, smallest to largest.  These 
ranks Rij are then used for computation of the test statistic.  Within each 
group, the average group rank Rj  is computed: 

 Rj`   = 

∑
i=1

nj
 Rij 

nj   . 

Tied data  When observations are tied, assign the average of their ranks to each.  
Test Statistic  The average group rank Rj  is compared to the overall average rank 

 R`  = (N+1)/2, squaring and weighting by sample size, to form the test
statistic K: 

 K = 
12

N(N +1)
n

j
j =1

k

∑ R 
j
−

N +1

2

 
 
 

 

 
 
2
. 

Decision Rule  To reject   H0:  all groups have identical distributions, versus 
   H1:  at least one distribution differs   
 Reject H0 if  K ≥ χ21−α,(k−1)  the 1−α quantile of a chi-square distribution 

with (k−1) degrees of freedom;  otherwise do not reject H0. 
 

Example 1. 
Fecal coliforms, in organisms per 100 ml, were measured in the Illinois River from 1971 to 1976 
(Lin and Evans, 1980).  A small subset of those data are presented here.  Do all four seasons 
exhibit similar values, or do one or more seasons differ?  Boxplots for the four seasons are 
shown in figure 7.1. 
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Table 7.1     Selected fecal coliform data (from Lin and Evans, 1980).  
[counts in organisms per 100 ml] 

 Summer  Fall Winter Spring  
 l00 65 28 22 
 220 120 58  53 
 300 210  120 110 
 430 280 230  140  
 640 500  310 320  
 1600 1100 500 1300 
 PPCC p-value 0.05 0.06 0.50 0.005 
 

 
Figure 7.1   Boxplots of Fecal Coliform Data from the Illinois River 
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Should a parametric or nonparametric test be performed on these data?  If even one of the four 
groups exhibits non-normality, the assumptions of parametric analysis of variance are violated.  
The consequences of this violation is an inability to detect differences which are truly present -- 
a lack of power.  The PPCC test for normality rejects normality at α =0.05 for two of the 
seasons, summer and spring (table 7.1).  Outliers and skewness for the fall samples also argue for 
non-normality.  Based solely on the skewness and outliers evident in the boxplot, a 
nonparametric test should be used on these data. 

Computation of the Kruskal-Wallis test is shown in table 7.2.  This is compared to a table of the 
chi-square distribution available in many statistics texts, such as Iman and Conover (1983).  We 
conclude that there is not enough evidence in these data to reject the assumption that fecal 
coliform counts are distributed similarly in all four seasons. 

Table 7.2     Kruskal-Wallis test for the fecal coliform data.  

 Summer  Fall Winter Spring  
 Ranks  Rij 6 5 2 1 
  12 8.5 4  3 
  15 11  8.5 7 
  18 14 13  10  
  21 19.5  16 17  
    24    22    19.5   23  
  R 

j
 16 13.3 10.5 10.2 R 

j
= 12.5 

 K=2.69 χ20.95,(3) = 7.815 p=0.44 so, do not reject equality of distributions. 
 

7.1.1.4   The rank transform approximation 
The rank transform approximation to the Kruskal-Wallis test is computed by performing a one-
factor analysis of variance on the ranks Rij.  This approximation compares the mean rank within 
each group to the overall mean rank, using an F-distribution for the approximation of the 
distribution of K.  The F and chi-square approximations will result in very similar p-values.  The 
rank transform method should properly be called an "analysis of variance on the ranks".   

For the example 1 data, the rank transform approximation results in a p-value of 0.47, essentially 
identical to that for the large sample approximation.  Detailed computations are shown 
following the discussion of ANOVA in the next section. 
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7.1.2   Analysis of Variance (One Factor) 
Analysis of variance is the parametric equivalent to the Kruskal-Wallis test.  It compares the 
mean values of each group with the overall mean for the entire data set.  If the group means are 
dissimilar, some of them will differ from the overall mean, as in figure 7.2.  If the group means 
are similar, they will also be similar to the overall mean, as in figure 7.3. 

 
Figure 7.2   Hypothetical data for three groups.  
Treatment mean square > Error mean square. 

 

Why should a test of differences between means be named an analysis of variance?  In order to 
determine if the differences between group means (the signal) can be seen above the variation 
within groups (the noise), the total noise in the data as measured by the total sum of squares is 
split into two parts: 
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 Total sum of squares  = Treatment sum of squares + Error sum of squares 
 (overall variation) = (group means − overall mean) + (variation within groups) 

 
j=1

k

∑
i=1

n
j

∑ (y
ij
− y )2 = ∑

j=1

k
    nj (y 

j
− y )2 + 

j=1

k

∑
i=1

n
j

∑ (y
ij
− y 

j
)2 

If the total sum of squares is divided by N−1, where N is the total number of observations, it 
equals the variance of the yij's.  Thus ANOVA partitions the variance of the data into two parts, 
one measuring the signal and the other the noise.  These parts are then compared to determine if 
the means are significantly different. 

7.1.2.1   Null and alternate hypotheses 
The null and alternate hypotheses for the analysis of variance are: 
 H0: the k group means are identical  µ1= µ2 = ...= µk . 
 H1: at least one mean is different. 

 
Figure 7.3   Hypothetical data for three groups.  
Treatment mean square ≅ Error mean square. 
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7.1.2.2   Assumptions of the test 
If ANOVA is performed on two groups, the F statistic which results will equal the square of the 
two-sample t-test statistic F=t2, and will have the same p-value.  It is not surprising, then, that 
the same assumptions apply to both tests: 
1. All samples are random samples from their respective populations.   
2. All samples are independent of one another. 
3. Departures from the group mean (yij − y j) are normally distributed for all j groups. 
4. All groups have equal population variance σ2 estimated for each group by sj2 

  sj2 = i=1

n
j

∑ (y
ij

−y j )
2

n
j
-1

 

Violation of either the normality or constant variance assumption results in a loss of ability to 
see differences between means (a loss of power).  The analysis of variance suffers from the same 
five problems as did the t-test:  1) lack of power when applied to non-normal data, 2) 
dependence on an additive model, 3) lack of applicability for censored data, 4) assumption that 
the mean is a good measure of central tendency for skewed data, and 5) difficulty in assessing 
whether the normality and equality of variance assumptions are valid for small sample sizes.  See 
Chapter 5 for a detailed discussion of these problems.   

Difficulties arise when using prior tests of normality to "prove" non-normality before allowing 
use of the nonparametric Kruskal-Wallis test.  Small samples sizes may inhibit detecting non-
normality, as mentioned above.  Second, transformations must be done on more than two 
groups of data.  It is usually quite difficult to find a single transformation which when applied to 
all groups will result in each becoming normal with constant variance.  Even the best 
transformation based on sample data may not alleviate the power loss inherent when the 
assumptions of ANOVA are violated.  Finally, if all groups are actually from a normal 
distribution, one or more may be "proven" non-normal simply by chance (there is an α% 
chance for each group).  Thus the results of testing for normality can be quite inconclusive prior 
to performing ANOVA.  The value of nonparametric approaches here is that they are relatively 
powerful for a wide range of situations.   

7.1.2.3   Computation 
Each observation yij can be written as a sum of the overall true mean µ, plus the difference αj 
between µ and the true mean of the jth group µj, plus the difference εij between the individual 
observation yij and the jth group mean µj:  
 yij = µ + αj + εij,  

jkmonson
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where: yij is the ith individual observation in group j, j=1,...k;  
 µ is the overall mean (over all groups); 
 αj is the "group effect", or (µj − µ), and 
 εij are the residuals or "error" within groups.  

If H0 is true, all j groups have the same mean equal to the overall mean µ, and thus  
αj = 0 for all j.  If group means differ, αj ≠ 0 for some j.  In order to detect a difference 
between means, the variation within a group around its mean due to the εij's must be sufficiently 
small in comparison to the difference between group means so that the group means may be 
seen as different (see figure 7.2).  The variation within a group is estimated by the within-group 
or error mean square (MSE), computed from the data.  The variation between group means is 
estimated by the treatment mean square (MST).  Their computation is shown below. 

Sum of Squares 
The error or within-group sum of squares  

 SSE = 
j=1

k

∑
i=1

n
j

∑ (y
ij

− y 
j
) 2   

estimates the total within-group noise using departures from the sample group mean 
y j.  Error in this context refers not to a mistake, but to the inherent variability within a group.  
The treatment (between-group) sum of squares 

 SST = 
j=1

k

∑ n
j
(y 

j
− y ) 2   

estimates the treatment effect using differences between group means and the overall mean of 
the sample, weighted by sample size. 

Degrees of freedom 
Each of the sums of squares has an associated degrees of freedom, the number of independent 
pieces of information used to calculate the statistic.  For the treatment sum of squares this equals 
k−1, as when k−1 of the group means are known, the kth group mean can be calculated.  The 
total sum of squares has N−1 degrees of freedom, the denominator of the formula for the 
variance of yij.  The error sum of squares has degrees of freedom equal to the difference 
between the above two, or N−k. 

Mean Squares and the F-test 
Dividing the sums of squares by their degrees of freedom produces the total variance, and the 
mean squares for treatment (MST) and error (MSE).  These mean squares are also measures of 
the variance of the data.   

jkmonson



168 Statistical Methods in Water Resources 

 Mean Square Formula Estimates: 
 Variance of yij = Total SS / N−1 Total variance of the data 
 MST = SST / k−1 Variance within groups +  
     variance between groups. 
 MSE = SSE / N−k Variance within groups. 

If H0 is true, there is no variance between group means (no difference between means), and the 
MST will on average equal the MSE (figure 7.3).  As αj = 0, all variation is simply around the 
overall mean µ, and the MST and MSE both estimate the total variance.  However when H1 is 
true, the MST is larger on average than the MSE (figure 7.2), as most of the noise is that 
between groups.  Therefore a test is constructed to compare these two estimates of variance, 
MST and MSE.  The F-ratio   
 F = MST / MSE  
is computed and compared to quantiles of an F distribution.  If MST is sufficiently larger than 
MSE, F is large and H0 is rejected.  When H0 is true and there is no evidence for differences in 
group means, F is expected to equal 1 (µF = 1 when H0 is true).  In other words, an F = 1 has a 
p-value near 0.50, varying with the degrees of freedom.  If F were below 1, which could happen 
due to random variation in the data, generally p > 0.50 and no evidence exists for differences 
between group means. 

The computations and results of an ANOVA are usually organized into an ANOVA table.  For 
a one-way ANOVA, the table looks like: 

Source   df   SS    MS  F p-value 
Treatment (k−1)  SST MST MST/MSE p 
Error  (N−k)  SSE  MSE  
Total N−1 Total SS 
 

Example 1, cont. 
For the fecal coliform data from the Illinois River, the ANOVA table is given below.  The F 
statistic is quite small, indeed below 1.  At α=0.05 or any reasonable α-level, the mean counts 
would therefore not be considered different between seasons.  

Source   df   SS    MS  F p-value 
Season 3 361397 120466 0.67 0.58 
Error  20 3593088 179654  
Total 23 3954485 

However, this ANOVA has been conducted on non-normal data.  Without knowing the results 
of the Kruskal-Wallis test, concern should be expressed that the result of "no difference" may be 
an artifact of the lack of power of the ANOVA, and not of a true equivalence of means.  Some 
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statisticians have recommended performing both tests.  This may be unnecessary if the data 
exhibit sufficient non-normality to suspect an inability of ANOVA to reject.  Also assumed by 
performing ANOVA is that group means are an appropriate data summary.  For the obviously 
skewed distributions found for all but the winter season, means will make little sense as 
estimates of the values which might be expected to occur.  Means would be useful when 
estimating the mass of bacteria transported per season, but not in the hypothesis testing realm. 
 

One factor analysis of variance  
Situation Several groups of data are to be compared, to determine if their means are 

significantly different.  Each group is assumed to have a normal distribution 
around its mean.  All groups have the same variance. 

Computation The treatment mean square and error mean square are computed as their sum 
of squares divided by their degrees of freedom (df).  When the treatment mean 
square is larger than the error mean square as measured by an F-test, the group 
means are significantly different. 

 MST= j=1

k

∑ n
j
(y 

j
−y )2

k −1
 where  k−1 = treatment degrees of freedom 

 

 MSE = j=1

k

∑
i=1

n
j

∑ (y
ij

−y j)
2

N − k
 where N−k = error degrees of freedom 

Tied data  No alterations necessary.  

Test Statistic  The test statistic F: 
F  =  MST / MSE 

Decision Rule  To reject   H0:  the mean of every group is identical, versus 
  H1:  at least one mean differs . 
 Reject H0 if  F ≥ F1−α, k−1, N−k  the 1−α quantile of an F distribution with 

k−1 and N−k degrees of freedom;  otherwise do not reject H0. 

 

7.2  Tests For The Effects of More Than One Factor 

It is quite common that more than one factor is suspected to be influencing the magnitudes of 
observations.  In these situations it is desirable to measure the influence of all factors 
simultaneously.  Sequential one-factor tests are an inadequate alternative to a single multi-factor 
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test.  Even when only one factor is actually influencing the data and a one-way ANOVA for that 
factor soundly rejects H0, a second one-way test for a related factor may erroneously reject H0 
simply due to the association between the two factors.  The test for the second factor should 
remove the effect of the first before establishing that the second has any influence.  By 
evaluating all factors simultaneously, the influence of one can be measured while compensating 
for the others.  This is the objective of a multi-factor analysis of variance, and of the 
nonparametric analogue. 
 

7.2.1   Nonparametric Multi-Factor Tests 
For two-factor and more complex ANOVA's where the data within one or more treatment 
groups are not normally distributed and may not have equal variances, there are two possible 
approaches for analysis.  The first is a class of tests which include the Kruskal-Wallis and 
Friedman tests as simpler cases.  These tests, described by Groggel and Skillings (1986), do not 
allow for interactions between factors.  The tests reformat multiple factors into two factors, one 
the factor being tested, and the other the collection of all other treatment groups for all 
remaining factors.  The data are then ranked within treatment groups for analysis, much as in a 
Friedman test.  The reader is referred to their paper for more detail. 

The second procedure is a rank transformation test (Conover and Iman, 1981).  All data are 
ranked from 1 to N, and an ANOVA computed on the ranks.  This procedure is far more 
robust to departures from the assumptions of normality and constant variance than is an 
ANOVA on the original data.  The rank transformation produces values which are much closer 
to meeting the two critical assumptions than are the original values themselves.  The tests 
determine whether the mean rank differs between treatment groups, rather than the mean.  The 
mean rank is interpreted as an estimate of the median.  Multiple comparison procedures on the 
ranks can then differentiate which groups differ from others. 

Examples of the computation and performance of these rank transformation tests will be 
delayed until after discussion of parametric factorial ANOVA. 
 
7.2.2   Multi-Factor Analysis of Variance -- Factorial ANOVA 
The effects of two or more factors may be simultaneously evaluated using a factorial ANOVA 
design.  A factorial ANOVA occurs when none of the factors is a subset of the others.  If 
subsetted factors do occur, the design includes "nested" factors and the equations for computing 
the F test statistics will differ from those here (nested ANOVA is briefly introduced in a later 
section).  A two-factor ANOVA will be fully described -- more than two factors can be 
incorporated, but are beyond the scope of this book.  See Neter, Wasserman and Kutner (1985) 
for more detail on higher-way  and nested analysis of variance. 
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For a two-factor ANOVA, the influences of two explanatory variables are simultaneously tested.  
The first page of this chapter presented a two-factor ANOVA, the determination of chemical 
concentrations among basins at low flow.  The objective was to determine whether 
concentrations differed as a function of mining history (whether or not each basin was mined, 
and if so whether it was reclaimed) and of rock type. 

7.2.2.1   Null and alternate hypotheses 
Call the two factors A and B.  There are i=1,...a ≥ 2 categories of factor A, and  j=1,...b ≥ 2 
categories of factor B.  Treatment groups are defined as all the possible combinations of factors 
A and B, so there are a•b treatment groups.  Within each treatment group there are nij 
observations.  The test determines whether mean concentrations are identical among all the 
a•b treatment groups, or whether at least one differs. 
 H0 :  all a•b treatment group means µij are equal µ11= µ12 = ...= µab 
 H1 :  at least one µij differs from the rest. 

The magnitude of any observation yijk can be affected by several possible influences: 
 yijk = µ + αi + βj + αβij + εijk , where 
 αi = influence of the ith category of A 
 βj = influence of the jth category of B 
 αβij = interaction effect between A and B beyond those of αi and βj 

separately for the ijth treatment group, and 
 εijk = residual error, the difference between the kth observation (k=1,...nij) 

and the treatment group mean µij. 

The null hypothesis states that treatment group means µij all equal the overall mean µ.  
Therefore αi βj and αβij all equal 0 -- there are no effects due to any of the factors or to their 
interaction.  If any one of αi, βj, or αβij are nonzero, the null hypothesis is rejected, and at least 
one treatment group evidences a difference in its mean. 

7.2.2.2   Interaction between factors 
If αβij = 0 in the equation above, there is no interaction present.  Without interaction, the effect 
of factor B is identical for all groups of factor A, and the effect of factor A is identical for all 
groups of factor B.  Suppose there are 3 groups of factor A (a1, a2, and a3) and 2 groups of 
factor B (b1 and b2), resulting in six treatment groups overall.  Lack of interaction can be 
visualized by plotting the means for all treatment groups as in figure 7.4.  The parallelism of the 
lines shows that no interaction is present.  The effect of A going from a1 to a2 to a3 is identical 
regardless of which B group is involved.  The increase going from b1 to b2 for factor B is 
identical for every group of factor A. 

When interaction is present (αβij ≠ 0) the treatment group means are not determined solely by 
the additive effects of factors A and B alone.  Some of the groups will have mean values larger 
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or smaller than those expected just from the results of the individual factors.  The effect of 
factor A can no longer be discussed without reference to which group of factor B is  of interest, 
and the effect of factor B can likewise not be stated apart from a knowledge of the group of 
factor A.  In a plot of the treatment group means, the lines are no longer parallel (figure 7.5).  
The pattern of differences going from a1 to a2 to a3 depends on which group of factor B is of 
interest, and likewise for the differences between b1 and b2 -- the pattern differs for the three A 
groups. 
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Figure 7.4   Six treatment group means with no interaction present 
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Figure 7.5   Six treatment group means with interaction present 
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Interaction can result from a synergistic or antagonistic effect.  As an example, fish may not die 
instream due only to higher water temperatures, or to slightly higher copper concentrations, but 
combine the two and the result could be deadly.  This type of interrelation between factors 
results in a significant interaction effect.  For k factors there are (k−1) possible interaction terms 
between the factors.  Unless it is known ahead of time that interactions are not possible, 
interaction terms should always be included and tested for in multi-factor ANOVA models. 

7.2.2.3   Assumptions for factorial ANOVA 
Assumptions are the same as for a one-way ANOVA.  Departures from each treatment group 
mean µij (every combination of factors A and B) are assumed normally distributed with identical 
variance.  This is a consequence of the εij, which are normally distributed and of variance σ2, 
being randomly distributed among the treatment groups.  The normality and constant variance 
assumptions can be checked by inspecting boxplots of the data for each treatment group. 

7.2.2.4   Computation 
The influences of factors A, B, and their interaction are evaluated separately by again 
partitioning the total sums of squares into component parts due to each factor.  After dividing 
by their respective degrees of freedom, the mean squares for factors A, B, and interaction are 
produced.  As with a one-way ANOVA, these are compared to the error mean square (MSE) 
using F-tests to determine their significance. 

Sum of Squares 
The equations for the sums of squares for factor A (SSA), factor B (SSB), interaction (SSI), and 
error, assuming constant sample size n per treatment group, are: 
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Mean Squares and the F-test 
Dividing the sums of squares by their degrees of freedom produces the mean squares for factors 
A, B, interaction, and error as in the ANOVA table below.  If H0 is true and αi, βj, and αβij all 
equal 0, all variation is simply around the overall mean µ.  The MSA, MSB, and MSI will then all 
be measures of the error variance, as is the MSE, and all three F-tests will have ratios not far 
from 1.  However when H1 is true, at least one of the mean squares in the numerators should be 
larger than the MSE, and the resulting F-ratio will be larger than the appropriate quantile of the 
F distribution.  When F is large, H0 can be rejected, and that influence be considered to 
significantly affect the magnitudes of the data at a level of risk equal to α. 
 
The two-factor ANOVA table is as follows when there is an equal number of observations for 
each treatment (all nij = n). 
Source   df   SS    MS  F p-value 
Factor A (a−1) SSA SSA/(a-1) MSA/MSE 
Factor B (b−1) SSB SSB/(b-1) MSB/MSE 
Interaction (a−1) (b−1) SSI SSI/(a-1)(b-1) MSI/MSE 
Error  ab(n−1)  SSE SSE/[ab(n-1)]   
Total abn−1 Total SS 
 

Multi-factor analysis of variance  
Situation Two or more influences are to be simultaneously tested, to determine if either 

cause significant differences between treatment group means.  Each group is 
assumed to have a normal distribution around its mean.  All groups have the 
same variance. 

Computation Compute the sums of squares and mean squares as above. 

Tied data  No alterations necessary.  

Test Statistic  To test factor A: To test factor B: To test for interaction: 
FA =  MSA / MSE FB =  MSB / MSE FI =  MSI / MSE 

 with degrees of freedom for the numerator of: 
 dfn =  (a−1) dfn =  (b−1) dfn =  (a−1)(b-1) 

Decision Rule  To reject   H0:  the mean of every group is identical (no treatment effects 
for either factor or interaction), versus 

  H1:  at least one mean differs. 
 Reject H0 if  F ≥ F1−α, dfn, ab(n−1)  the 1−α quantile of an F distribution 

with dfn and ab(n−1) degrees of freedom;  otherwise do not reject H0. 
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Example 2 
Iron concentrations were measured at low flow in numerous small streams in the coal-producing 
areas of eastern Ohio (Helsel, 1983).  Each stream drains either an unmined area, a reclaimed 
coal mine, or an abandoned coal mine.  Each site is also underlain by either a sandstone or 
limestone formation.  Are iron concentrations influenced by upstream mining history, by the 
underlying rock type, or by both? 

There are several scenarios which would cause H0 to be rejected.  Factor A (say mining history) 
could be significant (αi≠ 0), but factor B insignificant.  Or factor B (rock type) could be 
significant (βj≠ 0), but not A.  Both factors could be significant (αi, βj ≠ 0).  Both factors could 
be significant, plus an additional interaction effect because one or more treatment groups (say 
unreclaimed sandstone basins) exhibited much different iron concentrations than those expected 
from either influence alone (αi, βj, αβij ≠ 0).  Finally, both factor A and B could be not 
significant (αi, βj = 0) but concentrations be elevated for one specific treatment group (αβij ≠ 
0).  This would be interpreted as no overall mining  or rock type effect, but one combination of 
mining history and rock type would have differing mean concentrations. 

Boxplots for a subset of the iron concentration data from Helsel (1983) are presented in figure 
7.6.  Note the skewness, as well as the differences in variance as depicted by differing box 
heights.  A random subset was taken in order to produce equal sample sizes per treatment 
group, yet preserving the essential data characteristics.  The subset data are listed in Appendix 
C5.  In the section 7.2.2.5, analysis of unequal sample sizes per treatment group will be 
presented and the entire iron data set analyzed.   

There are six treatment groups, combining the three possible mining histories (unmined, 
abandoned mine, and reclaimed mine) and the two possible rock types (sandstone and 
limestone).  An analysis of variance conducted on this subset which has n=13 observations per 
treatment group produced the following ANOVA table.  Tested was the effect of mining history 
alone, rock type alone, and their interaction (Mine*Rock).  A*B is a common abbreviation for 
the interaction between A and B. 

ANOVA table for the subset of iron data 
Source df SS MS F p-value 
Rock 1 15411 15411 2.38 0.127 
Mine 2 32282 16141 2.49 0.090 
Rock*Mine 2 25869 12934 2.00 0.143 
Error  72 466238 6476 
Total 77 539801 

None of the three possible influences is significant at the α = 0.05 level, as their  p-values are all 
larger than 0.05.  However, the gross violation of the test's assumptions of normality and equal 
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variance shown in the boxplots must be considered.  Perhaps the failure to reject H0 is due not 
to a lack of an influence evidenced in the data, but of the parametric test's lack of power to 
detect these influences because of the violation of test assumptions.  To determine whether this 
is so, the equivalent rank transformation test is performed. 
 

 
Figure 7.6  A subset of the iron concentrations at low flow from Helsel (1983) 

 

To compute the rank transformation test, the data are ranked from smallest to largest, 1 to 
n=78.  An analysis of variance is then performed on the ranks of the data.  The ANOVA table is 
below, while a boxplot of data ranks is shown in figure 7.7. 

ANOVA table for the ranks of the subset of iron data 
Source df SS MS F p-value 
Rock 1 4121.7 4121.7 13.38 0.000 
Mine 2 10933.9 5467.0 17.74 0.000 
Rock*Mine 2 2286.2 1143.1 3.71 0.029 
Error  72 22187.2 308.2 
Total 77 39529.0 
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Results for the rank transformation tests are startlingly different than those for the parametric 
ANOVA.  All three influences, mining history, rock type, and their interaction, are significant at 
α = 0.05.  Gross violations of the assumptions of ANOVA by these data have clearly inhibited 
the parametric test from detecting the influences of these factors.  The rejection of H0 for the 
rank test indicates that the median iron concentrations differ between treatment groups.  Mean 
concentrations will be distorted by the skewness and outliers present in most of the treatment 
groups. 

Analysis of variance on data ranks is an "asymptotically distribution-free" technique.  That is, for 
sufficiently large sample sizes it tests hypotheses which do not require the assumption of data 
normality.  For the cases where equivalent, truly nonparametric techniques exist such as the 
Kruskal-Wallis and Friedman tests, the rank transformation procedures have been shown to be 
large-sample approximations to the test statistics for those techniques.  Where no equivalent 
nonparametric methods have yet been developed such as for the two-way design, rank 
transformation results in tests which are more robust to non-normality, and resistant to outliers 
and non-constant variance, than is ANOVA without the transformation.   

 
Figure 7.7   Boxplots of the ranks of the iron data shown in Figure 7.6 

 

A third option for analysis of the two-way design is ANOVA on data transformed by a power 
transformation.  The purpose of the power transformation is to produce a more nearly-normal 
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and constant variance data set.  As water resources data are usually positively skewed, the log 
transformation is often employed.  Using logarithms for ANOVA implies that the influences of 
each factor are multiplicative in the original units, as the influences of the logarithms are 
additive.  The primary difficulty in using a power transformation is in producing a normally 
distributed error structure for every treatment group.  Groups which are skewed may be greatly 
aided by a transformation, but be side-by-side with a group which was symmetric in the original 
units, and is now asymmetric after transformation!  Boxplots for each treatment group should be 
inspected prior to performing the ANOVA to determine if each group is at least symmetric.  
When only some of the treatment groups exhibit symmetry, much less normality, concerns over 
the power of the procedure remain.  F tests which appear to be not significant are always 
suspect. 

In figure 7.8, boxplots of the base 10 logarithms of the low-flow iron concentrations are 
presented.  Most of the treatment groups still remain distinctly right-skewed even after the 
transformation, while the unmined limestone group appears less symmetric following 
transformation!  There is nothing magic in the log transformation -- any other transformation 
going down the ladder of powers might also remedy positive skewness.  It may also alter a 
symmetric group into one that is left-skewed.  The search for a transformation which results in 
all groups being symmetric is often fruitless.  In 

 
Figure 7.8   Boxplots of the base 10 logarithms of the iron data shown in Figure 7.6 
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addition, the "best" power transformation will likely change going from one data set to another, 
one location to another, and one time period to another.  In comparison, the rank 
transformation has simplicity, comparability among locations and time periods, and general 
validity as being asymptotically distribution-free.  When the assumptions of normality and 
constant variance are questionable, the rank transformation is the most generally appropriate 
alternative. 
 
7.2.2.5   Unequal sample sizes 
Equations presented in the previous section are appropriate only when the number of data per 
treatment group is identical for each group.  This is also called a "balanced" design.  
Computations for unequal sample sizes ("unbalanced" designs) are more complex.  Smaller 
statistics software packages often encode tests valid only for balanced designs, though that is not 
always obvious from their output.  Yet water resources data rarely involve situations when all 
sample sizes are equal.  Sample bottles are broken, floods disrupt the schedule, etc.  When data 
are unbalanced, the sums of squares for the above equations no longer test   

H0: µ1 = µ2 = ... = µk 
but test instead an hypothesis involving weighted group means, where the weights are a function 
of treatment group sample sizes.  This is of little use to the practitioner.  Some software will 
output the (useless and incorrect) results valid only for equal sample sizes even when unbalanced 
data are provided as input, with no warnings of their invalidity.  Be sure that when unequal 
sample sizes occur, tests which can incorporate them are performed. 

To perform ANOVA on unbalanced data, a regression approach is necessary.  This is done on 
larger statistical packages such as Minitab or SAS.  SAS's "type I" sums of squares (called 
"sequential sums of squares" by Minitab) are valid only for balanced cases, but SAS's "type III" 
sums of squares (Minitab's "adjusted sums of squares") are valid for unbalanced cases as well.  
Unbalanced ANOVAs are computed in the same fashion as nested F-tests for comparing 
regression models in analysis of covariance, discussed in Chapter 11.  Because the equations for 
the sums of squares are "adjusted" for unequal sample sizes, they do not sum to the total sum of 
squares as for balanced ANOVA.  See Neter, Wasserman and Kutner (1985) for more detail on 
the use of regression models for performing unbalanced ANOVA. 

Example 2, continued 
The complete 241 observations (Appendix C6) from Helsel (1983) are analyzed with an 
unbalanced ANOVA.  Boxplots for the six treatment groups are shown in figure 7.9.  They are 
quite similar to those in figure 7.6, showing that the subsets adequately represented all the data.  
An ANOVA table for the complete iron data set is as follows.  Note that the sums of squares do 
not add together to equal the total sum of squares for this unbalanced ANOVA.  Results for 
these data would be incorrect if performed by software capable only of balanced ANOVA.  
Conclusions reached (do not reject for all tests) agree with those previously given for ANOVA 
on the data subset. 
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ANOVA table for the complete (unbalanced) iron data 
Source df SS MS F p-value 
Rock 1 71409 71409 0.51 0.476 
Mine 2 262321 131160 0.93 0.394 
Rock*Mine 2 178520 89260 0.64 0.530 
Error  235 32978056 140332 
Total 240 34062640 

 
Figure 7.9   Iron concentrations at low flow from Helsel (1983) 

 

7.2.2.6   Fixed and random factors 
An additional requirement for the F tests previously given is that both factors are fixed.  With a 
fixed factor, the inferences to be made from the results extend only to the treatment groups 
under study.  For example, the influences of unmined, abandoned, and reclaimed mining 
histories were previously compared.  Differences in resulting chemical concentrations between 
these three specific mining histories are of interest, and hence this is a fixed factor.  A random 
factor would result from a random selection of several groups out of a larger possible set to 
represent the overall factor.  Inferences from the test results would be extended beyond the 
specific groups being tested to the generic factor itself.  Thus there is little or no interest in 
attributing test results to a specific individual group, but only in ascertaining a generic effect due 
to that factor. 
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As an example, suppose soil concentrations of a trace metal are to be compared between three 
particle size fractions all across the state, to determine which of the three fractions is most 
appropriate as a reconnaissance medium.  Particle size is a fixed effect -- there is interest in those 
specific sizes.  However, there is only enough funding to sample sparsely if done all across the 
state, so instead a random factor is incorporated to determine whether spatial differences occur.  
Several counties are selected at random, and intensive sampling occurs within those counties.  
No sampling is done outside of those counties.  The investigator will determine not only which 
size fraction is best, but whether this is consistent among the counties (the random effect), 
which by inference is extended to the entire state.  There is no specific interest in the counties 
selected, but only as they represent spatial variability. 

If every factor were random, F tests would use the mean squares for interaction as denominators 
rather than the mean square for error.  If a mix of random and fixed factors occurs (called a 
"mixed effects" design) as in the example above, there would be a mixture of mean squares used 
as denominators.  In general the fixed factors in the design use the interaction mean squares as 
denominators, and the random factors the error mean square, the reverse of what one might 
intuitively expect!  However, the structure of mixed effects F tests can get much more 
complicated, especially for more than two factors, and texts such as Neter, Wasserman and 
Kutner (1985) or Sokal and Rohlf (1981) should be consulted for the correct setup of F tests 
when random factors are present.  Note that computer software uses the MSE in the 
denominator unless otherwise specified, and thus assumes that all factors are fixed.  Therefore F 
tests automatically produced will not be correct when random factors are present, and the 
correct F ratio must be specifically requested and computed. 
 

7.3   Blocking -- The Extension of Matched-Pair Tests 

In Chapter 6, tests for differences between matched-pairs of observations were discussed.  Each 
pair of observations had one value in each of two groups, such as "before" versus "after".  The 
advantage of this type of design is that it "blocks out" the differences from one matched-pair to 
another that is contributing unwanted noise.  Such noise may mask the differences between the 
two groups (the treatment effect being tested) unless matched-pairs are used. 

Similar matching schemes can be extended to test more than two treatment groups.  Background 
noise is eliminated by applying the treatment to blocks (rather than pairs) of similar or identical 
individuals.  Only one observation is usually available for each combination of treatment and 
block.  This is called a "randomized complete block design", and is a common design in the 
statistical literature. 

The third example at the beginning of this chapter, detecting differences between three 
extraction methods used at numerous wells, is an example of this design.  The treatment effect is 
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the extraction method, of which there are three types (three groups).  The blocking effect is the 
well location; the well-to-well differences are to be "blocked out".  One sample is analyzed for 
each extraction method at each well. 

Four methods for analysis of a randomized complete block design will be presented.  Each of 
them attempts to measure the same influences.  To do this, each observation yij is broken down 
into the effects of four influences: 

 yij = µ + αj + βi + εij,  
where yij is the individual observation in block i and group j;  
 µ is the overall mean or median (over all groups), 
 αj is the "jth group effect", j=1,k  
 βi is the "ith block effect", i=1,n  
 εij is the residual or "error" between the individual observation and the 

combined group and block effects. 

Median polish provides resistant estimates of the overall median, of group effects and block 
effects.  It is an exploratory technique, not an hypothesis test procedure.  Related graphical tools 
determine whether the two effects are additive or not, and whether the εij are normal, as 
assumed by an ANOVA.  If not, a transformation should be employed to achieve additivity and 
normality before an ANOVA is performed.  The Friedman and median aligned ranks tests are 
nonparametric alternatives for testing whether the treatment effect is significant in the presence 
of blocking. 

7.3.1   Median Polish 
Median polish (Hoaglin et al., 1983) is an iterative process which provides a resistant estimate m 
of the overall median µ, as well as estimates aj of the group effects αj and bi of the block effects 
βi.  Its usefulness lies in its resistance to effects of outliers.  The polishing is begun by 
subtracting the medians of each row from the data table, leaving the residuals.  The median of 
these row medians is then computed as the first estimate of the overall median, and subtracted 
from the row medians.  The row medians are now the first estimates of the row effects.  Then 
the median of each column is subtracted from the residual data table and set aside.  The median 
of the column medians is subtracted from the column medians, and added to the overall median.  
The column medians now become the first estimates of the column effects.  The entire process 
is repeated a second time, producing an estimated overall median m, row and column departures 
from the overall median (estimates aj and bi), and a data table of residuals eij estimating the εij. 

Example 3 
Mercury concentrations were measured in periphyton at six stations along the South River, 
Virginia, above and below a large mercury contamination site (Walpole and Myers, 1985).  
Measurements were made on six different dates.  Of interest is whether the six stations differ in 
mercury concentration.  Is this a one-way ANOVA setup?  No, because there may be 
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differences among the six dates -- the periphyton may not take up mercury as quickly during 
some seasons as others, etc.  Differences caused by sampling on six different dates are unwanted 
noise which should be blocked out, hence date is a blocking effect.  The data are presented in 
table 7.3, and boxplots by station in figure 7.10.  There appears to be a strong increase in 
mercury concentration going downstream from station 1 to station 6, reflecting an input of 
mercury along the way. 

Table 7.3   Mercury Concentrations in Periphyton (Walpole and Myers, 1985) 
 Station: 1 2 3 4 5 6 
 Date 
 1 0.45 3.24 1.33 2.04 3.93 5.93 
 2 0.10 0.10 0.99 4.31 9.92 6.49 
 3 0.25 0.25 1.65 3.13 7.39 4.43 
 4 0.09 0.06 0.92 3.66 7.88 6.24 
 5 0.15 0.16 2.17 3.50 8.82 5.39 
 6 0.17 0.39 4.30 2.91 5.50 4.29 

 
Figure 7.10   Periphyton Mercury Upstream (1) to Downstream (6) of Input to River 

The first step in median polish is to compute the median of each row (date), and subtract it from 
that row's data.  The residuals remain in the table. 
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Table 7.4   Table 7.3 data aligned by subtraction of row medians 
 Station: 1 2 3 4 5 6 row med 
 Date       ( bi ) 
 1 -2.190 0.600 -1.310 -0.600 1.290 3.290 2.64 
 2 -2.550 -2.550 -1.660 1.660 7.270 3.840 2.65 
 3 -2.140 -2.140 -0.740 0.740 5.000 2.040 2.39 
 4 -2.200 -2.230 -1.370 1.370 5.590 3.950 2.29 
 5 -2.685 -2.675 -0.665 0.665 5.985 2.555 2.84 
 6 -3.430 -3.210 0.700 -0.690 1.900 0.690 3.60 

 
Next the median of the row medians (2.64) is computed as the first estimate of the overall 
median m.  This is subtracted from each of the row medians: 

 Station: 1 2 3 4 5 6 row med 
 Date       ( bi ) 
 1 -2.19 0.60 -1.31 -0.60 1.29 3.29 0.00 
 2 -2.55 -2.55 -1.66 1.66 7.27 3.84 0.01 
 3 -2.14 -2.14 -0.74 0.74 5.00 2.04 -0.25 
 4 -2.20 -2.23 -1.37 1.37 5.59 3.95 -0.35 
 5 -2.69 -2.68 -0.67 0.67 5.99 2.56 0.20 
 6 -3.43 -3.21 0.70 -0.69 1.90 0.69 0.96 
         m=2.64 
 

The median of each column (station) is then computed and subtracted from that column's data.  
The residuals from the subtractions remain in the table. 

 Station: 1 2 3 4 5 6 row med 
 Date       ( bi ) 
 1 0.19 2.99 -0.29 -1.31 -4.01 0.37 0.00 
 2 -0.17 -0.16 -0.64 0.95 1.97 0.92 0.01 
 3 0.24 0.25 0.28 0.03 -0.30 -0.88 -0.25 
 4 0.18 0.16 -0.35 0.66 0.29 1.03 -0.35 
 5 -0.31 -0.29 0.35 -0.04 0.69 -0.36 0.20 
 6 -1.05 -0.82 1.72 -1.40 -3.40 -2.23 0.96 
 aj  col med:  -2.38 -2.39 -1.02 0.71 5.30 2.92 m=2.64 
 

Then the median of the column medians (-0.16) is subtracted from each of the column medians, 
and added to the overall median: 
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 Station: 1 2 3 4 5 6 row med 
 Date       ( bi ) 
 1 0.19 2.99 -0.29 -1.31 -4.01 0.37 0.00 
 2 -0.17 -0.16 -0.64 0.95 1.97 0.92 0.01 
 3 0.24 0.25 0.28 0.03 -0.30 -0.88 -0.25 
 4 0.18 0.16 -0.35 0.66 0.29 1.03 -0.35 
 5 -0.31 -0.29 0.35 -0.04 0.69 -0.36 0.20 
 6 -1.05 -0.82 1.72 -1.40 -3.40 -2.23 0.96 
 aj  col med:  -2.22 -2.23 -0.86 0.87 5.46 3.08 m=2.48 
 

This table now exhibits the first "polish" of the data.  Usually two complete polishes are 
performed in order to produce more stable estimates of the overall median and row and column 
effects.  For the second polish, the above process is repeated on the table of residuals from the 
first polish.  After a second complete polish, little change in the estimates is expected from 
further polishing.  The table then looks like: 

 Station: 1 2 3 4 5 6 row med 
 Date       ( bi ) 
 1 0.22 3.02 -0.19 -1.26 -3.77 0.31 0.03 
 2 -0.57 -0.56 -0.97 0.57 1.78 0.43 0.47 
 3 0.08 0.09 0.19 -0.11 -0.24 -1.12 -0.03 
 4 -0.08 -0.09 -0.54 0.42 0.24 0.69 -0.03 
 5 -0.17 -0.14 0.56 0.11 1.04 -0.31 0.12 
 6 0.15 0.38 2.99 -0.18 -1.98 -1.11 -0.18 
 aj  col med:  -2.18 -2.19 -0.89 0.89 5.29 3.20 m=2.38 
 

The above table shows that  
1) The station effects are large in comparison to the date effects (the aj are much larger in 

absolute magnitude than the bi ).  
2) There is a clear progression from smaller to larger values going downstream (aj generally 

increases from stations 1 to 6), with the maximum at station 5. 
3) A large residual occurs for station 5 at date 1 (smaller concentration than expected). 

7.3.1.1   Plots related to median polish for checking assumptions 
Median polish can be used to check the assumptions behind an analysis of variance.  The first 
assumption is that the residuals εij are normally distributed.  Boxplots of the residuals eij in the 
table provide a look at the distribution of errors after the treatment and block effects have been 
removed.  Figure 7.11 shows that for the periphyton mercury data the residuals are probably not 
normal due to the large proportion of outliers, but at least are relatively symmetric: 
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Figure 7.11   Residuals from the median smooth of periphyton mercury data 

 

In addition, the additivity of the table can be checked.  An ANOVA assumes that the treatment 
and block effects are additive.  In other words, if being in group 1 adds -2.18 units of 
concentration to the overall mean or median, and if being at time 1 adds 0.03 units, these add 
together for treatment group 1 at time 1.  If this is not the case, a transformation of the data 
prior to ANOVA must be performed to produce additivity.  To check additivity, the 
"comparison value" cij (Hoaglin et al., 1983) is computed for each combination ij of block and 
treatment group, where  
 cij  =  ai • bj / m . 
A residuals plot of the tabled residuals eij versus cij will appear to have a random scatter around 
0 if the data are additive.  If not, the pattern of residuals will lead to an appropriate 
transformation to additivity -- for a nonzero slope s, the data should be raised to the (1−s) 
power in the ladder of powers.  In figure 7.12, a residuals plot for the mercury median polish 
indicate no clear nonzero slope (most of the data are clustered in a central cloud), and therefore 
no transformation is necessary. 

 
Figure 7.12   Median polish residuals plot showing random scatter around eij=0 
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7.3.2   The Friedman Test 
The Friedman test is the most common nonparametric test used for the randomized complete 
block design.  It computes the ranks of the data only within each block, not making cross-
comparisons between blocks.  Treatment effects are determined from the within-block ranks 
each treatment has received.  The Friedman test is an extension of the sign test, and reduces to 
the sign test when comparing only two treatment groups.  Its advantages and disadvantages in 
comparison to the analysis of variance are the same as that of the sign test to the t-test.  When 
the errors εij can be considered normal, the ANOVA should be preferred.  For the many 
situations where the errors are not normal, the Friedman test will generally have equal or greater 
power to detect differences between treatment groups, and should be performed.  The 
Friedman test is especially useful when the data can be ranked but differences between 
observations cannot be computed, such as when comparing a <1 to a 5. 

7.3.2.1   Null and alternate hypotheses 
The Friedman test is used to determine whether  
 H0:  the median values for k groups of data are identical, or  
 H1:  at least one median is significantly different. 
As with the Kruskal-Wallis test, the test does not provide information on which medians are 
significantly different from others.  That information must come from a multiple comparison 
test. 

7.3.2.2   Computation of the exact test 
Rank the data within each block from 1 to k, from smallest to largest.  If the null hypothesis is 
true, the ranks within each block will vary randomly with no consistent pattern.  Summing across 
blocks, the average rank for each treatment group will be similar for all groups, and also be close 
to the overall average rank.  When the alternative hypothesis is true, the ranks in most of the 
blocks for one or more of the groups will be consistently higher or lower than others.  The 
average group rank for those groups will then differ from the overall average rank.  A test 
statistic Xf is constructed which uses the square of the differences between the average group 
ranks and the overall rank, to determine if groups differ in magnitude. 

The exact test statistic for the Friedman test is a function of both the number of blocks and 
treatments.  Iman and Davenport (1980) state that the exact test should be used for all cases 
where the number of treatment groups plus the number of blocks (k + n) is   
≤ 9.  For larger sample sizes a large sample approximation is sufficiently accurate for use.  When 
the number of blocks n is small, the F approximation should be preferred over the chi-square 
approximation (see the next section). 

Should the exact test be required, compute the exact test statistic Xf as shown for the large 
sample approximation of the following section.  Xf is computed identically for both the exact 
form and large sample approximation.  When ties occur,  either a corrected large sample 
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approximation must be used, or the rank transform (F approximation) calculated.  The rank 
transform may be easier to compute. 

7.3.2.3   Large sample approximation 
For years the Friedman test statistic was approximated using a chi-square distribution with k−1 
degrees of freedom.  This is the approximation used by statistics packages, and is presented here 
because of its common use.  However, it does not take into account the number of blocks in the 
data set, and can be in serious error for small n and small α (α < 0.1) (Iman and Davenport, 
1980).  An F approximation which is more accurate for small n is also available.  It can be 
computed from the chi-square approximation, or directly from the data as a rank transform 
method (an analysis of variance on the within-block ranks Rij). 

The box on the next page outlines the computation process for the large sample approximation 
to the Friedman test statistic. 

Example 3, continued. 
The Friedman test is used to determine if the median concentration of periphyton mercury 
differs for the 6 stations along the South River of Virginia.  The boxplots of this data were 
shown in figure 7.10, and the data given in table 7.3.  The within-block ranks are given below.  
For 6 blocks (date) and 6 stations, sample sizes are large enough to employ an approximation, 
so the preferred F approximation is computed. 
 

Table 7.5   Within-Block Ranks of the Table 7.3 data 
 Station: 1 2 3 4 5 6 
 Date 
 1 1 4 2 3 5 6 
 2 1.5 1.5 3 4 6 5 
 3 1.5 1.5 3 4 6 5 
 4 2 1 3 4 6 5 
 5 1 2 3 4 6 5 
 6 1 2 5 3 6 4 
 Rj`   1.33 2.0 3.17 3.67 5.83 5.0 

overall median = (k+1)/2 = 3.5 
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The Friedman test 
Situation Measurements of k treatment groups are performed on the same or related sets 

of subjects, called blocks.  There are n blocks.  One observation is made on 
each group-block combination (N = k•n). 

Computation Within each block, observations are ranked from 1 to k, smallest to largest.  
These within-block ranks Rij are then used to compute the average group rank 
Rj  for each of the j=1,k treatment groups: 

 Rj`   =  

∑
i=1

n
 Rij 

n   . 

Test Statistic  The average group rank Rj  is compared to the overall average rank 
 R  = (k+1)/2  in the test statistic Xf: 

 Xf = 
12 n

k (k+1)  ∑
j=1

k
  



Rj`  -  

k+1
2   

2
. 

Xf is compared either to an exact table or approximated by a chi-square 
distribution with (k−1) degrees of freedom.  However, a better approximation 
is available which is compared to an F distribution (Iman and Davenport, 
1980).  This form is more accurate for small n. 

 f = 
(n-1) Xf

n (k-1) - Xf  . 

Tied data  When observations are tied within a block, assign the average of their ranks to 
each.  Xf must be corrected when more than a few ties occur.  

 Xf = 
12 n

k (k+1) -  
1

n(k-1)   ∑
i=1

n
   ∑

j=1

k
 (tij (j3-j))

    ∑
j=1

k
  



Rj`  - 

k+1
2   

2
. 

where  tij equals the number of ties of extent j in row i.  The test statistic f is 
then computed from this corrected Xf as above.  An alternative to computing 
Xf and then f is the rank transform ANOVA (next section). 

Decision Rule  To reject   H0:  the median of every group is identical, versus 
   H1:  at least one median differs   
 Exact test:  Reject H0 if  Xf > xα, the (1-α)th quantile of the Friedman test 

statistic distribution from table B7 of the Appendix;  otherwise do not reject 
H0. 
F-approximation:  Reject H0 if  f ≥ F1−α, k−1, (n−1)(k−1)  the 1−α quantile 
of an F distribution with k−1 and (n−1)(k−1) degrees of freedom;  otherwise 
do not reject H0. 
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There are only two ties, so ignoring the formula for the tie correction to the variance, 

Xf = 
12 6( )
6(7) j =1

6

∑ R
j
−

7

2

 
 
 

 

 
 

2

= 
12

7
∑ (−2.17) 2 + (-1.5)2 + (-0.33)2 + (0.17)2 + (2.33)2 + (1.5)2. 

 = 
12
7   • 14.78 

 = 25.33 .   This can be compared to a chi-square distribution having k−1 = 5 df. 

To be more exact, the tie correction will be computed.  For rows i=1,4,5,6 there are no ties.  So 
for j=1, tij = 6 (there are 6 "ties" of extent 1), and for j=2 to 6, tij = 0 (no true ties).  For these 
four rows 

 ∑
j=1

k
 (tij (j3-j))   = 6(1−1)+0(8−2)+0(27−3)+0(64−4)+0(125−5)+0(216−6) = 0. 

Rows without ties will always add to zero.  Also note that "ties" of extent 1 will always 
contribute 0 to the sum, as 13−1 = 0.  For rows i=2 and 3 there is one pair of tied values per 
row.  Thus for j=1, tij = 4 (4 single values);  for j=2, tij = 1 (1 tie of extent 2), and for j=3 to 6, 
tij = 0 (no triplicates, etc.).  For each of these two rows 

 ∑
j=1

k
 (tij (j3-j))  = 4(1−1)+1(8−2)+0(27−3)+0(64−4)+0(125−5)+0(216−6) = 6. 

Therefore ∑
i=1

n
  ∑
j=1

k
 (tij (j3-j))  = 0+6+6+0+0+0 = 12, and 

 Xf = 
12•6

6 (7) - 
1

6(5)•12
   • 14.78 =  25.58 

which can be compared to a chi-square distribution with 5 degrees of freedom. 

The better approximation is the F approximation, or 

   f =  
(5) 25.58

6 (5) - 25.58   = 28.94 , which is compared to F0.95, 5, 25 = 4.5 

Therefore reject H0 that the medians are the same with a p-value of <0.0001. 

7.3.2.4   Rank transform approximation:  analysis of variance: on within-block ranks 
Again an approximation to the exact test statistic may be computed by performing the 
parametric two-factor ANOVA on the ranks.  For the Friedman test, the appropriate ranks are 
the within-block ranks of table 7.5.  Ties are automatically corrected for by assigning the average 
rank to all ties within a block.  A two-factor ANOVA on the within-block ranks has an 
ANOVA table as in section 7.3.4.  The resulting F statistic, the ratio of the MST for the 
treatment group over the MSE, is the same as the statistic f derived from the chi-square 
approximation above.  Thus the ANOVA on within-block ranks gives a better approximation 

ejswibas
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than does Xf for the cases (α < 0.1 and small n) where the chi-square approximation is 
inaccurate (Groggel, 1987). 
 
Example 3, continued. 
The ANOVA table for the within-block ranks of table 7.5 is: 
Source   df   SS    MS  F p-value 
Date (block) 5 0.000 0.000 
Station 5 88.667 17.733 28.93 <0.0001 
Error  25 15.333 0.613 
Total 35 104.000 

Note that all differences between blocks have been nullified by transforming the data to the 
identical within-block ranks, 1 to k.  As the blocks all have the same values within them, the 
block sum of squares equals 0.  Also note that the F statistic is identical to that previously 
calculated from the large-sample approximation after tie correction.  Therefore the ANOVA on 
within-block ranks provides a convenient way to avoid the complicated tie correction to the 
Friedman statistic. 
 

7.3.3   Median Aligned-Ranks ANOVA 
The Friedman test is the multi-treatment equivalent of the sign test.  In Chapter 6 the signed-
rank test was presented in addition to the sign test, and was favored over the sign test when the 
differences between the two treatments were symmetric.  In this section a multi-treatment 
equivalent to the signed-rank test is presented, called the Median Aligned-Ranks ANOVA 
(MARA).  MARA is one of several possible extensions of the signed-rank test; others include 
Quade's test (Conover, 1980).  Groggel (1987) and Fawcett and Salter (1984) have shown that an 
aligned-rank method has substantial advantages in power over other possible signed-rank 
extensions.  

Friedman's test avoids any comparisons across blocks, just as the sign test avoids comparisons of 
the magnitudes of paired differences across blocks.  This avoids the confusion produced by 
block-to-block differences, but does not take advantage of the information contained in such 
comparisons.  MARA allows comparisons between blocks by first subtracting the within-block 
median from all of the data within that block.  This "aligns" the data across blocks to a common 
center.  It is equivalent to the ranking of block-to-block differences done in the signed-ranks 
test.  To derive the benefits of cross-block comparisons, a cost is incurred.  This is an 
assumption that the residuals εij are symmetric.  Symmetry can be evaluated by estimating the 
residuals using median polish, and producing a boxplot as in figure 7.11. 

Note that just as for the Friedman's test and two-way ANOVA without replication there are 
(k−1)(n−1) error degrees of freedom, (n−1) less than a one-way ANOVA.  MARA is a two-
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factor analysis, with alignment contributing the block effect.  However, MARA is computed 
using a one-way ANOVA on the aligned ranks, so the correct F-test will differ from that 
performed automatically by a computerized analysis.  The error degrees of freedom must be 
(k−1)(n−1), not k(n−1) as for a one-way ANOVA.  MARA is identical to the aligned ranks 
procedure of Fawcett and Salter (1984), except that the block median is used for alignment 
rather than the block mean. 

The Median Aligned-Ranks ANOVA test 
Situation Measurements of k treatment groups are performed on the same or related sets 

of subjects, called blocks.  There are n blocks.  One observation is made on 
each group-block combination (N = k•n). 

Computation Within each of the n blocks, the observations are aligned by subtracting the 
block median, forming the aligned oij.   
 oij = (yij − bi),  where block median bi = [median(yij), j=1,...k] 

 The oij are then ranked from 1 to N, forming aligned ranks ARij: 
 ARij = rank (oij) . 

Test Statistic  One-way analysis of variance is computed on the ARij  However, the F statistic 
is  F = MST/MSE, where the error degrees of freedom are (n−1) less than in a 
one-way ANOVA because of the alignment procedure.  The ANOVA table is: 

 Source   df   SS    MS  F  
 Treatment (k−1) SST SST/(k−1) MST/MSE  
 Error  (k−1)(n−1) SSE SSE/[(k−1)(n−1)] 
 Total n(k−1) Total SS 

Tied data  Average ranks are assigned to all tied oij. 

Decision Rule  To reject   H0:  the median of every group is identical, versus 
   H1:  at least one median differs   
 Reject H0 if  F ≥ F1−α, k−1, (n−1)(k−1)  the 1−α quantile of an F distribution 

with k−1 and (n−1)(k−1) degrees of freedom;  otherwise do not reject H0. 

7.3.3.1   Null and alternate hypotheses 
The null and alternate hypotheses are identical to those of the Friedman test  
 H0:  the median values for k groups of data are identical, or  
 H1:  at least one median is significantly different. 
Here, however, it is assumed that the residuals εij are symmetric.  MARA does not provide 
information on which medians are significantly different from others.  That must come from a 
multiple comparison test. 
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7.3.3.2   Computation 
MARA is a rank transform approximation test;  p-values for an exact test have not been 
computed. 

Example 3, continued 
The aligned oij for the periphyton mercury data were computed during the first step of the 
median polish, and listed in table 7.4.  These oij are then ranked from 1 to N=36 to form aligned 
ranks, which are presented in table 7.6: 

Table 7.6   Aligned Ranks of the Table 7.4 data 
 Station: 1 2 3 4 5 6 
 Date 
 1 9 19 14 18 24 30 
 2 5.5 5.5 12 26 36 31 
 3 10.5 10.5 15 23 33 28 
 4 8 7 13 25 34 32 
 5 3 4 17 20 35 29 
 6 1 2 22 16 27 21 
 

A one-way analysis of variance is conducted on these aligned ranks.  However, the computerized 
F-test is ignored, as the error degrees of freedom used were n(k−1)=30, and do not reflect the 
alignment process.  The appropriate ANOVA table and F-test are below, and the p-value shows 
that H0 is to be rejected.  Significant differences are found between treatment group medians: 
Source   df   SS    MS  F p-value 
Station 5 3290.3 658.1 27.71 <0.0001 
Error  25 593.7 23.8 
Total 30 3884.0 
 

7.3.4   Parametric Two-Factor ANOVA Without Replication 
The traditional parametric test for the randomized complete block design is again an analysis of 
variance -- a two-factor ANOVA without replication.  One factor is the contrast between 
treatment groups while the second is the block effect.  There is one observation (no replicates) 
per treatment-block combination.  The block effect is of no interest except to remove its 
masking of the treatment effect, so no test for its presence is required.   
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7.3.4.1   Null and alternate hypotheses 
The hypotheses are similar to those of the Friedman and MARA tests, except that treatment 
group means, rather than medians, are being tested. 
 H0:  the k treatment group means are identical,  µ1 = µ2 = ... = µk, versus  
 H1:  at least one mean is significantly different. 

The ANOVA model is identical to that for all of the tests of this section: 
 yij = µ + αj + βi + εij,  
where yij is the individual observation in block i and group j;  
 µ is the overall mean, 
 αj is the "jth group effect", j=1,k  
 βi is the "ith block effect", i=1,n  
 εij is the residual or "error" between the individual observation and the 

combined group and block effects. 
Here, however, it is assumed that the residuals εij follow a normal distribution.  ANOVA does 
not provide information on which means differ from others.  That must come from a multiple 
comparison test. 

7.3.4.2   Computation 
As with other analysis of variance procedures, the treatment and error mean squares are 
computed, and their ratio forms the F statistic to be compared to a table of the F distribution for 
evaluation of its significance.  Again there are k treatment groups and n blocks. 

In comparison to a one-way ANOVA without blocking, the error sum of squares SSE is split 
into two parts, the SSE and the sum of squares for the block effect SSB.  The variation due to 
differences between blocks is thereby removed from the background noise (MSE).  If there is an 
appreciable block effect, removal of the SSB lowers the SSE and MSE in comparison to their 
values for a one-way ANOVA.  This produces a higher F statistic, allowing the treatment effect 
to be more easily discerned. 

Example 3, continued 
An analysis of variance is calculated directly on the periphyton mercury data.  The ANOVA 
table is: 
Source   df   SS    MS  F p-value 
Date 5 3.26 0.65 
Station 5 230.13 46.03 26.15 <0.0001 
Error 25  44.02 1.76 
Total 35 277.40 
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The null hypothesis is again soundly rejected.  The treatment group means are declared different 
at any reasonable alpha level.  As in all of the tests applied to this data set, the block effect 
(Date) is minimal. 

Two-factor ANOVA without replication 
Situation Measurements of k treatment groups are performed on the same or related sets 

of subjects, called blocks.  There are n blocks.  One observation is made on 
each group-block combination (N = k•n). 

Computation Sums of squares for treatment, block and error are computed using the 
following formula.  These are divided by their appropriate degrees of freedom 
to form mean squares. 
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Test Statistic  The F statistic is computed as F = MST/MSE,.  The ANOVA table is: 
 Source   df   SS    MS  F p-value 
 Treatment k−1 SST SST/(k−1) MST/MSE 

Block n−1 SSB SSB/(n−1) 
 Error (k−1)(n−1)  SSE   SSE/[(k−1)(n−1)] 
 Total N−1 Total SS 

Tied data  No corrections necessary. 

Decision Rule  To reject   H0:  the mean of every group is identical, versus 
   H1:  at least one mean differs   
 Reject H0 if  F ≥ F1−α, k−1, (n−1)(k−1)  the 1−α quantile of an F distribution 

with k−1 and (n−1)(k−1) degrees of freedom;  otherwise do not reject H0. 
 

7.4   Multiple Comparison Tests 

In most cases the analyst is interested not only in whether group medians or means differ, but 
which differ from others.  This is information not supplied by the tests presented in the previous 
sections, but by methods called multiple comparison tests (MCTs).  MCTs compare all possible 
pairs of treatment group medians or means, and are performed only after the null hypothesis of 
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"all medians or means identical" has been rejected.  Of interest is the "pattern" of group medians 
or means:   
 group A ≅ group B < < group C, 
etc.  MCT's are not efficient methods for contrasting specific sets of groups known to be of 
interest before an ANOVA or Kruskal-Wallis test is done, such as a treatment versus a control.  
Other tests are available for making specific contrasts.  Instead, MCTs compare all possible 
combinations of treatment group centers, ranking the centers in order and indicating which are 
similar or different from others.  

Stoline (1981) reviews the many types of parametric multiple comparison tests.  Campbell and 
Skillings (1985) discuss nonparametric multiple comparisons. 
 

7.4.1   Parametric Multiple Comparisons 
Parametric MCTs compare treatment group means.  They often calculate a "least significant 
range" or LSR, the distance between any two means which must be exceeded in order for the 
two groups to be considered significantly different at a significance level α. 

 If  y 
1

− y 
2

> LSR = R s2 n  , y 
1 and y 

2
 are significantly different. 

The statistic R is analogous to the t-statistic in a t-test.  R depends on the test used (is some 
function of either a t- or studentized range statistic q), the error degrees of freedom from the 
ANOVA, and on α.  The variance s2 is just the MSE from the ANOVA.  Parametric MCTs can 
be classified into four types, based on their method of computation and on whether a pairwise 
or overall α level is used (figure 7.13).   

Duncans Multiple Range test

SNK

REGWQ

REGWF

Tukey 
Scheffe 

Bonferroni

Fisher's t-tests (LSD)

α pairwise α overall

MST 
(equal n only)

SIM 
(equal or 

unequal n)

*

*

*

 
Figure 7.13   Types of Parametric Multiple Comparison Tests  

Methods with an asterisk * in figure 7.13 have the most power to detect differences between 
group means of those methods using the overall error rate.  The REGW methods are the most 
powerful (have the smallest LSR) for equal sample sizes, though Tukey's test is close in power.  
For unequal sample sizes, Tukey's method is the most powerful of those listed.  Therefore 
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Tukey's method is a generally applicable and powerful multiple comparison test for a variety of 
situations. 

Multiple-stage tests, MST, are valid only when group sample sizes are equal.  Examples are the 
Duncan's, Student-Newman-Keuls (SNK), and REGW tests.  Their R statistic varies for each 
pairwise comparison as a function of the number of group means in between the two being 
compared.  A new least significant range (y 1 − y 2) must then be computed for each pairwise 
comparison of means.  If sample sizes were unequal, test results could be non-intuitive, as in:   
A > B,  B > C, but A = C where "A > B" means that A is larger and significantly different from 
B, and "A = C" means A is not significantly different from C.  This could arise if B had a large 
sample size so that comparisons involving it had a lower LSR than those not involving B.   Thus 
MSTs are valid only for equal sample sizes within all groups. 

Simultaneous inference methods, SIM, are valid for both equal and unequal group sample sizes.  
Examples are Tukey's, Sheffe's, and Fisher's t-tests.  These tests use one R value to calculate a 
single least significant range for all pairwise comparisons.  The harmonic mean  

 harmonic mean of n1 and n2 = 
2 n1 n2 
 n1 + n2   

is substituted for n in the case of unequal group sample sizes.  So for unequal sample sizes a SIM 
should be used. 

The second classification criteria for MCTs is based on the type of error rate α used for 
comparisons (figure 7.13).  One class of tests uses the stated α level for each pairwise 
comparison (αp= pairwise error rate).  When there are multiple comparisons each having a 
pairwise error rate of α, the overall probability of declaring at least one false difference (the 
overall error rate αo) is much greater than αp.  This overall error rate is the error rate for the 
"pattern" of group means, and is more often of interest than a pairwise error rate in water 
resources applications.  For example, when comparing six group means, there are (6•5)/2 = 15 
pairwise comparisons.  If  αp = 0.05 is used for each test, then there will be an overall error rate 
αo = 1− (1− αp)15  = 0.54 of making at least one error in the overall comparisons of the six 
group means. 

Unfortunately, the distinction between the overall and pairwise error rates is often not 
understood, and pairwise rates are presented as if they were overall rates.  The pairwise rate is 
much like the probability of being robbed today, while the overall rate is like the probability of 
ever being robbed in your lifetime.  To claim that the (very small) probability of being robbed 
today is actually the probability of ever being robbed leads to a false sense of security.  Similarly, 
citing that according to a Duncan's multiple range test, A > B = C = D > E = F with an error 
rate of  α = 0.05 when in fact 0.05 was used for each test, also presents a false sense of security 
in the results. 
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Duncan's test is often used in this incorrect fashion.  Individual paired differences found at the 
α = 0.05 level results in the overall rate of at least one error in the pattern of group means at 
something higher, such as the 0.54 chance for the 6 groups above.  When the primary interest is 
in the overall pattern and its accuracy, methods which set the error rate equal to the overall α, 
such as Tukey's test, should be performed. 

Some authors report only results of a MCT, usually Duncan's multiple range test, skipping the 
required prior ANOVA F-tests.  NEVER DO THIS!  The likely reason that this has been done 
is that ANOVA did not find significant differences at a true (overall) significance level of 0.05, 
but the Duncan's test did find differences.  Why does this occur?  Duncan's test was performed 
at a pairwise significance level of 0.05, but at an overall level of something much higher (0.54 for 
the six means above).  An overall error level of 0.54 states there a 54 percent chance that two 
means will be declared significantly different when in fact they are not.  An ANOVA at α = 0.54 
would also be "significant" (the p-value is somewhere below 0.54), but a test having this large an 
error rate is essentially useless!  ANOVA should always be performed first as the appropriate 
test for determining whether any differences occur between group means.  If they do not, stop 
there.  By performing only a MCT, an α=0.54 test is conducted while declaring it to be an α = 
0.05 test of whether differences occur.  This is quite misleading. 

7.4.1.1   Assumptions 
All MCTs discussed thus far have the same assumptions as does ANOVA -- data within each 
treatment group are normally distributed, and each treatment group has equal variance.  
Violations of these assumptions will result in a loss of power to detect differences which are 
actually present. 

7.4.1.2   Computation of Tukey's test 
Two group means y i and y j can be considered different if
 y 

i
− y 

j
>  q (1−α), k, N−k •  MSE / n   

where q  is the studentized range statistic from Neter, Wasserman and Kutner 
(1985), 

  α  is the overall significance level, 
  k is the number of  treatment group means compared, 
  N−k  are the degrees of freedom for the MSE, and 
  n is the sample size per group. 

For unequal sample sizes 

 y 
i
− y 

j
>  q (1−α), k, N−k •  MSE • 

 ni + nj 
2 ni nj 

   

where n has been replaced with the harmonic mean of the unequal sample sizes for the two 
groups being compared, ni and nj.  For only two groups, q becomes the student's t statistic, and 
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Tukey's test is identical to Fisher's all-possible t-tests.   Formulas for other MCTs can be found 
in SAS Institute (1985). 

Example 4 
Knopman (1990) tested wells located in the Appalachian mountains of Pennsylvania to see if 
their specific capacities differed among four rock types -- dolomites, limestones, siliciclastics 
(sandstones, shales, etc.), and metamorphic plus igneous rocks.  To make the data more nearly 
normal, the natural log of specific capacity was used.  A subset of 200 observations across the 
four rock types were randomly selected from the over 4000 original observations.  This subset is 
presented in Appendix C7.  Boxplots are shown in figure 7.14.  The ANOVA table below 
indicates that the log specific capacities differed significantly between the four rock types. 

Source   df  SS  MS  F p-value 
Rock type 3 54.03 18.010 4.19 0.007 
Error  196 842.15 4.297 
Total 199 896.18 
 

 
Figure 7.14   Natural logs of specific capacity of wells in four rock types, Pennsylvania 

Since the null hypothesis is rejected, Tukey's test can be computed.  The four group means are : 
 y  [dolomite] =  y d   = 0.408 y  [limestone] =  y l      = −0.688 
 y  [siliciclastic] =  y s    = −0.758 y  [metamorphic] =  y m    = −0.894 
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The least significant range LSR is computed as: 
 LSR  =  q(0.95, 4, 196)   • 4.297/50 ≅  q(0.95, 4, ∞) •  4.297 / 50     = 3.63•0.293 

 =  1.06 
Therefore, any group means of log specific capacity which differ by more than 1.06 are 
significantly different by the Tukey's multiple comparison test.  y  d is then seen to be 
significantly different and larger than the other three groups, which are not significantly different 
from each other, or: 
 y d  >  y l  =  y s  =  y m 

REGWQ could also be computed because sample sizes in each subset group are equal.  The 
choice of REGWQ versus Tukey's would largely depend on which were available. First the k 
group means are ordered by magnitude ( y d , y l , y s , y m).  The first comparison is made 
between the extremes, y d versus y m.  The studentized range is again used, accounting for the 
number of means between and including the two being compared; k=4 in this first case.  If this 
test proves to be significant, the two possible comparisons with p =k−1 intervening group 
means are made -- y d versus y s and y l versus y m.  Continue working inward until an 
insignificant difference is found.  No comparisons of group means contained between means 
already found to be insignificant need be made. 

For REGWQ, two group means differ at an overall significance level α if : 
 y i − y j  >  q αp, p, N−p •  MSE / n   

 where αp  = 1 − (1−α) p/k  for p < (k−1) 
                  = α       for p ≥ (k−1). 

Using the log specific capacity data, comparing y d versus y m using αp  = α = 0.05: 
the least significant range = q 0.05, 4, 196 •  4.297 / 50   = 1.06, identical to Tukey's LSR.  
Therefore y d > y m.  Next, compare y d versus y s and y l versus y m.  Both of these have 
p=3 and an LSR of q 0.05, 3, 197 •  4.297 / 50   = 3.31•0.293 = 0.97.  Therefore  
y d > y s and  y l = y m.  Since the limestone and metamorphic group means are not 
significantly different there is no reason to test the siliciclastic versus the metamorphic group 
means.  For the final comparison, y d is compared to y l.  The LSR is based on p=2 and  

αp  = 1 − (0.95) 2/4 = 0.025.  Therefore LSR = q 0.025, 2, 198 •  4.297 / 50   = 3.31•0.293 = 
0.97.  So  y d > y l and the overall pattern is again: 
 y d  >  y l  =  y s  =  y m 
 

7.4.2   Nonparametric Multiple Comparisons 
Statisticians are actively working in this area (see Campbell and Skillings, 1985).  The simplest 
procedures for performing nonparametric multiple comparisons are rank transformation tests.  
Ranks are substituted for the original data, and a multiple comparison test such as Tukey's is 

jkmonson
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performed on the ranks.  These are logical follow-ups to the rank transform approximation 
approaches to the Kruskal-Wallis, Friedman, and two-way ANOVA tests previously presented. 

For the one-way situation, Campbell and Skillings (1985) recommend a multiple-stage test using 
the Kruskal-Wallis (KW) statistic.  The process resembles the REGWQ test above.  After a 
significant KW test occurs for k groups, place the groups in order of ascending average rank.  
Perform new KW tests for the two possible comparisons between p = (k−1) groups, noting that 
this involves re-ranking the observations each time.  If significant results occur for one or both 
of these tests, continue attempting to find differences in smaller subsets of p < (k−1).  In order 
to control the overall error rate, follow the pattern of REGWQ for the critical alpha values: 
 αp = 1 − (1−α)p/k for p < (k−1) 
  = α   for p ≥ (k−1) 

 

Example 4 continued 
First, Tukey's test will be performed on the ranks of the Pennsylvania log specific capacity data.  
Then a second nonparametric MCT, the multiple-stage Kruskal-Wallis (MSKW) test using 
REGWQ alpha levels, is performed. 

The ANOVA table for testing data ranks shows a strong rejection of H0: 
Source   df   SS    MS  F p-value 
Rock type 3 38665 12888 4.02 0.008 
Error  196 627851 3203 
Total 199 666515 

The four group mean ranks are : 
 R [dolomite] =  R d   = 124.11 R  [limestone] =  R l    = 94.67 
 R  [siliciclastic] =  R s    = 95.06  R  [metamorphic] =  R m  = 88.16 

The least significant range LSR for a Tukey's test on data ranks is computed as: 
 LSR =  q

(0.95, 4, 196) •  3203/50     ≅  q
(0.95, 4, ∞) •  3203/50     = 3.63•8.00 

  =  29.06 
Pairs of group mean ranks which are at least 29.06 units apart are significantly different.  
Therefore (within 0.01)      R d > R s =  R l  =  R m. 

To compute the MSKW test, the first step is merely the Kruskal-Wallis test on the four groups.  
The overall mean rank R equals 100.5.  Then 
 K=11.54 χ2

0.95,(3)
 = 7.815  p=0.009   so, reject equality of group medians. 
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Proceeding, new Kruskal-Wallis tests are performed between the two sets of three contiguous 
treatment groups: R d vs. R l vs. R s   and    R l vs. R s vs. R m .  This requires that the 
data all be re-ranked each time.  Their respective test statistics are denoted Kdls and Klsm.  The 
significance level is as in REGWQ, so for (k−1) = 3 groups, αp = α = 0.05. 
 
 Kdls  = 8.95 χ2

0.95,(2)
 = 5.99 p=0.012 so, reject equality of group medians. 

 Klsm = 0.61 p=0.74 group medians not significantly different. 

Finally, the k−2 = 2 group comparisons are performed.  There is no need to do these for the 
limestone versus siliciclastic and siliciclastic versus metamorphic comparisons, as the 3-group 
Kruskal-Wallis test found no differences among those group medians.  Therefore the only 
remaining 2-group comparison is for dolomite versus limestone.  The 2-group Kruskal-Wallis 
test is performed at a significance level of  
αp  = 1 − (0.95) 2/4 = 0.025.   
 Kdl  = 5.30 χ2

0.975,(1)
 = 5.02 p=0.021 so, reject equality of group medians. 

The pattern is the same as for the other MCT's,  
 mediand > medianl =  medians  =  medianm. 
 

7.5   Presentation of Results 

Following the execution of the tests in this chapter, results should be protrayed in an easily-
understandable manner.  This is best done with figures.  A good figure provides a visual 
confirmation of the outcome of the hypothesis test.  Differences between groups are clearly 
portrayed.  A poor figure gives the impression that the analyst has something to hide, and is 
hiding it effectively!  The following sections provide a quick survey of good and bad figures for 
illustrating differences between three or more treatment groups. 

7.5.1   Graphical Comparisons of Several Independent Groups 
Perhaps the most common method used to  report comparisons between groups is a table, and 
not a graph.  Table 7.7a is the most common type of table in water resources, one which 
presents only the mean and standard deviations.  As has been shown several times, the mean and 
standard deviation alone do not capture much of the important information necessary to 
compare groups, especially when the data are skewed.  Table 7.7b provides much more 
information -- important percentiles such as the quartiles are listed as well. 

Table 7.7a   A simplistic table comparing the four groups of log specific capacity data 
 Mean Std.Dev. 
Dolomite 0.408  2.557  
Limestone -0.688 2.360  
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Siliciclastics -0.758 1.407  
Metamorphic -0.894 1.761  

Table 7.7b   A more complete table for the log specific capacity data 
 N Mean Median Std.Dev. Min Max P25 P75 
Dolomite 50  0.408  0.542 2.557 -4.605  5.298 -1.332 2.264 
Limestone 50 -0.688  -0.805 2.360 -4.605  5.649 -2.231 0.728 
Siliciclastics 50 -0.758 -0.777 1.407 -3.507  1.723 -1.787 0.381 
Metamorphic 50 -0.894 -1.222 1.761 -3.912  4.317 -2.060 0.178 

However, neither table provides quick intuitive insight into the data structure.  Neither 
sufficiently illustrates the differences between groups found by the hypothesis tests in example 4, 
or how they differ. 

Histograms are commonly used to display the distribution of one or more data sets, and have 
been employed to attempt to illustrate differences between three or more groups of data.  They 
are not usually successful.  The many crossing lines, coupled with an artificial division of the data 
into categories, results in a cluttered and confusing graph.  Figure 7.15 displays four overlapping 
histograms, one for each of the data groups.  It is impossible to discern anything about the 
relative characteristics of any of the data groups from this figure.  Overlapping histograms 
should be avoided unless one is purposefully trying to confuse the audience!  In figure 7.16, side-
by-side bar charts display the same information.  This too is confusing and difficult to interpret.  
From the graph one could not easily say which group had the highest mean or median, much 
less anything about the groups' variability or skewness.  Many business software packages allow 
speedy production of such useless graphs as these. 
 
Figure 7.17 shows a quantile plot of the same four data groups.  The quantile plot far exceeds 
the histogram and bar chart in clarity and information content.  The dolomite group stands apart 
from the other three throughout most of its distribution, illustrating both the ANOVA and 
multiple comparison test results.  An experienced analyst can look for differences in variability 
and skewness by looking at the slope and shapes of each group's line.  A probability plot of the 
four groups would have much the same content, with the additional ability to look for 
departures from a straight line as a visual clue for non-normality. 
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Figure 7.15   Overlapping histograms fail to differentiate between four groups of data 

 
 

 

 
Figure 7.16   Side-by-side bars fail to clearly differentiate between four groups of data 
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Compare figures 7.15 to 7.17 with boxplots of the log specific capacity data shown previously in 
figure 7.14.  Boxplots clearly demonstrate the difference between the dolomite and other group 
medians.  Variability is also documented by the box height, and skewness by the heights of the 
top and bottom box halves.  See Chapter 2 for more detail on boxplots.  Boxplots illustrate the 
results of the tests of this chapter more clearly than commonly-used alternate methods such as 
histograms. 

 
Figure 7.17   Quantile plots differentiate between four groups of data 

 

7.5.2   Presentation of Multiple Comparison Tests 
Suppose a multiple comparison test resulted in the following:  
 y 1 = y 2 y 1 ≠ y 3  y 1 ≠ y 4   (= :  not significantly different) 
 y 2 = y 3  y 2 ≠ y 4      (≠ :  significantly different) 
 y 3 = y 4  
for four treatment groups having  y 1 > y 2  > y 3 > y 4 . 
The results are often presented in one of the two following formats: 

1.  Letters  
 y 1   y 2   y 3  y 4  
 A AB BC C 
Treatment group means are ordered, and those having the same letter underneath them are not 
significantly different.  The convenience of this presentation format is that letters can easily be 
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positioned somewhere within side-by-side boxplots, illustrating the results of a MCT as well as 
the overall test for equality of all means or medians (see figure 7.18). 

MCT results:  Boxes with same letter are 
not significantly different. 

A

AB

BC

C

 
Figure 7.18   Boxplots with letters showing the results of a MCT. 

 

2.  Lines 
 y 1   y 2  y 3  y 4  
     
   
In this presentation format, group means connected by a single unbroken line are not 
significantly different.  This format is suited for inclusion in a table listing group means or 
medians. 

A third method is somewhat more visual: 

3.  Shaded Boxes 
 y 1   y 2   y 3  y 4  
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These shaded boxes can be thought of as thick versions of the lines presented above.  Group 
means with boxes shaded along the same row are not significantly different.  Shaded boxes 
allow group means to be ordered by something other than mean or median value.  For example, 
the order of stations going upstream to downstream might be 3,1,2,4.  Boxes put in that order 
show a significant increase in concentration between 3 and 1 and a significant drop off again 
between 2 and 4.  So in addition to displaying multiple comparison test results, the shaded 
boxes below also illustrate the pattern of concentration levels of the data.  

 Downstream  > 
 y 3 <  y 1  =  y 2  > y 4  

 
Figure 7.19   Shaded boxes for illustration of a multiple comparison test. 

Station means not significantly different have boxes shaded within the same row. 
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Exercises 

7.1 Discharge from pulp liquor waste may have contaminated shallow groundwater with 
caustic, high pH effluent (Robertson, et al., 1984).  Determine whether the pH of 
samples taken from three sets of piezometers are all identical -- one piezometer group is 
known to be uncontaminated.  If not, which groups are different from others?  Which 
are contaminated? 

pH of samples taken from piezometer groups 
BP-1 7.0 7.2 7.5 7.7 8.7 7.8 
BP-2 6.3 6.9 7.0 6.4 6.8 6.7 
BP-9 8.4 7.6 7.5 7.4 9.3 9.0 

7.2 In addition to the waters from granitic terrain given in Exercise 2.3, Feth et al. (1964) 
measured chloride concentrations of ephemeral springs.  These additional data are listed 
below (use the zero value as is).  Test whether concentrations in the three groups are all 
identical.  If not, which differ from others? 

Chloride concentration, in mg/L 
Ephemeral Springs  0.0 0.9 0.1 0.1 0.5 0.2 
  0.3 0.2 0.1 2.0 1.8 0.1 
  0.6 0.2 0.4    

7.3 The number of Corbicula (bottom fauna) per square meter for a site on the Tennessee 
River was presented by Jensen (1973).  The data are found in Appendix C8.  Perform a 
median polish for the data of strata 1.  Graph the polished estimates of year and seasonal 
effects.  Is any transformation suggested by the residuals? 

7.4 Test the Corbicula data of strata 1 to determine whether season and year are significant 
determinants of the number of organisms.   

7.5 Test for significant differences in the density of Corbicula between seasons and strata for 
the 1969 data.




